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A B S T R A C T

The performance and complicated interactions of different classes of travelers on regional urban
networks are presented and analyzed. A new multi-class extension of a regional dynamic traffic
model, the Network Transmission Model is proposed. The classes in question correspond to
travelers using autonomous vehicles, conventional vehicles, equipped with Route Guidance and
Information Systems, and unequipped vehicles. Each class is represented by a different routing
method. Incremental Route Planning, an innovative predictive simulation-based routing method,
Proxy Regret Matching, a non-predictive strategic learning-based method and Multinomial Logit-
based Routing for 1st, 2nd and 3rd class respectively. All routing methods include a Public
Transit Diversion mechanism and are assumed to provide prescriptive route guidance, with pre-
trip information dissemination for every departing vehicle. We consider the possibility of non-
compliance for conventional vehicles equipped with Route Guidance and Information Systems.
We also consider 2 possible scenarios for autonomous vehicles that affect their travel time pre-
diction accuracy. We simulate regional traffic dynamics for simultaneous application of all
aforementioned routing methods, employing a market penetration scheme for each class of
travelers. We analyze results regarding the overall network performance for various combina-
tions of traveler class market penetration rates and non-compliance rates. We come to the con-
clusion that autonomous vehicles will not only provide benefits for 1st class travelers, but for all
traveler classes on the network.

1. Introduction

Quality of life in cities, especially for vehicle passengers, can be directly attributed to the delay they experience daily, as a
consequence of congestion. Traffic congestion can be caused by temporary deterioration of network performance, in case of an
incident. There can also be recurrent congestion, whereby the travel demand bound for certain regions within the urban traffic
network exceeds the capacity of said regions, for specific time periods. Due to limited space availability in modern urban areas, costs
associated with infrastructure upgrade and extension are prohibitive. Optimizing the supply of existing infrastructure resources,
through use of traffic light control (Papageorgiou et al., 2003; Kuyer et al., 2008; Aboudolas et al., 2009; Haddad et al., 2013), route
guidance (Garcia et al., 2000; Knoop et al., 2012; Hajiahmadi et al., 2013; Yildirimoglu et al., 2015), as well as restricting network
travel demand through toll pricing (Geroliminis and Levinson, 2009; Zheng et al., 2012, 2016; Simoni et al., 2015), at different
degrees of granularity (individual network links, subnetworks), can help alleviate congestion phenomena. Integration of intelligent
sensor technologies, such as RSU (Road Side Unites) with DSRC (Dedicated Short Range Communications) capability, to the network
infrastructure can help increase the performance of the methods used to increase network capacity or restrict network travel demand,
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especially during peak hour.
In the not-so-distant future, self-driving cars are expected to comprise a significant portion of the vehicle population in me-

tropolitan areas, more concretely, experts are forecasting a 70% market penetration rate for autonomous vehicles by 2040 (IEEE,
2012). One of the main driving forces behind autonomous vehicle technology adoption is the improvement of passenger safety
through elimination of human error. Human error accounts for 94% of road accidents (Dingus et al., 2016), which in turn account for
10–30% of delays due to congestion (Skabardonis et al., 2003). One of the main obstacles facing the adoption of autonomous vehicles
is the uncertainty regarding their successful integration in human driver-populated traffic networks. Conventional vehicles equipped
with navigation devices are able to receive several types of guidance. Descriptive guidance involves prevailing traffic conditions,
predicted travel times and incident information. Prescriptive guidance involves specific shortest route information provision. Route
guidance can provide user-oriented benefits. Given that vehicles remain compliant to their prescribed routes (Hoogendoorn and
Bovy, 1998), route guidance can also lead to system-wide near-optimal network performance. Autonomous vehicles are expected to
always maintain compliance, and through coordination with traffic control centers, can lead to system-wide benefits. Past research
into the adoption and potential impact of autonomous vehicles has prioritized highly detailed dynamic modeling and simulation
(Fagnant and Kockelman (2014), Katrakazas et al. (2015), Talebpour and Mahmassani (2016), Wang et al. (2017)). Region-based
routing can be considered as routing at an aggregated level. Any large urban traffic network can be appropriately partitioned into
regions (Ji and Geroliminis, 2012; Lentzakis et al., 2014; Etemadnia et al., 2014; Saeedmanesh and Geroliminis, 2016, 2017). Region-
based routing then presents a set of region sequences that drivers can follow from their origin region to their desired destination
region. This has been shown to lead to significant decrease of total vehicle travel time and better utilization of available resources, i.e.
the regions of the urban traffic network, in our previous work (Lentzakis et al., 2016). In transportation economics literature,
travelers are classified into certain broad categories, according to their value of time, type of activity (commuting to work, leisure) or
other criteria and are given the option of changing their desired departure times, which becomes an additional control parameter
(Small and Verhoef, 2007). However, this classification introduces additional complexity and stochasticity to the route selection
process. In addition, many studies fail to consider the bounded rationality of travelers as decision makers (van Essen et al., 2016). A
public transit diversion mechanism, as integrated to each routing method presented in this paper, can be considered as an alternative
route choice which does not compromise travelers’ departure time preferences. This feature would not be as readily justifiable in a
link-by-link routing approach, where the destination location might be a considerable distance away from a public transit station.

1.1. Background on macroscopic fundamental diagram

Godfrey (1969) first proposed the existence of a Macroscopic Fundamental Diagram representing the relationship between vehicle
density (veh/km) and space-mean flow (veh/h) for urban regions. Herman and Prigogine (1979) defined a Two Fluid Kinetic model
later improved upon by Herman and Ardekani (1984) that stated that the average speed in urban network traffic is a function of the
ratio of stopped vehicles, which can be represented as a power function of network link density. Daganzo (2007) defined a re-
lationship between urban network output, representing the number of trips ending inside or outside of the network, and number of
vehicles present at the network, or accumulation. This relationship should be valid under the condition that congestion is distributed
in a homogeneous fashion throughout the network and as long as external conditions are varying at a slow rate. Geroliminis and
Daganzo (2007) posited that the Macroscopic Fundamental Diagram can also exist for urban areas. The Macroscopic Fundamental
Diagram, MFD for brevity, has been a staple of freeway traffic modeling and applications, but it’s accuracy, as regards freeway
networks, has recently been called into question (Mahmassani and Saberi, 2013; Geroliminis and Sun, 2011a; Knoop and
Hoogendoorn, 2013). The MFD has been shown to be a suitable modeling tool for urban network regions, characterized by low intra-
regional link density variability. The Urban-scale MFD can relate the number of vehicles within a certain region, called accumulation,
to the product of average network flow and length, called production. The Urban-scale MFD presents in the shape of a asymmetric
unimodal concave function, where for a critical accumulation value, network production is at capacity. For accumulation values
below the critical value, network is considered to be under free flow conditions, while for accumulation values above the critical
value, network is considered to be congested, ranging from lightly congested, all the way to gridlock. A well-defined Urban-scale MFD
can only exist under homogeneous distribution of congestion. The traffic modeling of a network partitioned to several regions each
represented with a MFD is first developed in Geroliminis et al. (2013). Geroliminis and Sun (2011b), Mazloumian et al. (2010) and
Daganzo et al. (2011) have demonstrated the importance of network link density variability in acquiring a well-defined Urban-scale
MFD. Additionally, work from de Jong et al. (2013), Leclercq and Geroliminis (2013), Knoop et al. (2014), Gayah et al. (2014)
indicates that network topology, traffic signal settings, route distribution and demand can actually affect the total output of a region.
Leclercq et al. (2015) posited that MFD shape will change when for the same network, different route distribution is applied and
proposed a framework whereby all routes within a region would be grouped into macroscopic route clusters. Keyvan-Ekbatani et al.
(2016) found that the integration of adaptive traffic control and network gating leads to higher network throughput as well as shorter
queues on the boundary expanding work by Gayah et al. (2014). There are two approaches in mitigating these effects. One approach
is to incorporate link density variability, a measure of congestion heterogeneity, in the relationship defined by the Urban-scale MFD,
deriving an MFD dependent not only on the accumulation, but also link density variability, as in Simoni et al. (2015), Ramezani et al.
(2015), Yildirimoglu et al. (2015). Another approach is to partition the urban traffic network into homogeneously congested regions
with well-defined Urban-scale MFDs. Examples of different partitioning schemes resulting in homogeneously congested regions can
be found in Ji and Geroliminis (2012), Lentzakis et al. (2014), Ji et al. (2014), Saeedmanesh and Geroliminis (2016). One of several
regional dynamic traffic models used to describe region-based traffic dynamics, the Network Transmission Model, NTM for short, was
originally developed by Knoop and Hoogendoorn (2014, 2015) and later implemented in a real-world application by Knoop et al.
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(2016). The NTM describes a multi-layer network that comprises of a regional and an urban traffic layer and takes into account the
dynamics of a network as expressed through the Urban-scale MFD, to implement a demand and supply scheme between regions with
capacitated boundaries, similar to the Cell Transmission Model by Daganzo (1994). The concept of Urban-scale MFD has been used
extensively in research into perimeter control schemes (Aboudolas and Geroliminis, 2013; Haddad et al., 2012; Keyvan-Ekbatani
et al., 2012, 2013, 2015; Haddad and Mirkin, 2017; Kouvelas et al., 2017), pricing (Geroliminis and Levinson, 2009; Zheng et al.,
2012; Simoni et al., 2015; Zheng et al., 2016), but to a lesser extent in routing applications (Knoop et al., 2012; Hajiahmadi et al.,
2013; Yildirimoglu et al., 2015; Lentzakis et al., 2016; Xiong et al., 2016). Recently, efforts have been made to combine link-based
and aggregate traffic modeling for MFD-based control approaches (Zheng et al., 2012; Keyvan-Ekbatani et al., 2016). Investigations
into combined types of traffic management have also gained traction in the researcher community (Papageorgiou and Messmer,
1991; Chen and Ben-Akiva, 1998; Yang, 1999; Adler et al., 2005; de Cea Ch and Valverde, 2009). Sirmatel and Geroliminis (2016) are
the first to combine route guidance and perimeter control as part of an MFD-based traffic management scheme. A significant part of
transportation is classification of the travel demand into multiple modes, however most of the MFD-based traffic literature have been
focusing on the public transport aspect of multi-modal travel demand modeling and management (buses, trams) (Ampountolas et al.,
2014; Zheng et al., 2013; Geroliminis et al., 2014; Chiabaut, 2015; Ortigosa et al., 2015, 2017; Yildirimoglu et al., 2016), however,
there has been, to the authors’ knowledge, no research into a framework that integrates autonomous vehicles into a private own-
ership or ridesharing scheme.

1.2. Objectives and contributions

In this work, we introduce and implement a multi-class extension of a region-based dynamic traffic model called Network
Transmission Model, which marks the first contribution of this paper. Subsequently, we apply individually, as well as in various
combinations, different types of routing approaches. We introduce a predictive simulation-based routing approach called Incremental
Route Planning, as an additional contribution of this paper. The purpose of this mixed application of different types of route guidance,
which marks the main contribution of this paper, is to showcase the interaction of different traveler classes, on a regional traffic
network. Each class features distinct characteristics and is being represented by different types of route guidance. We first define 3
distinct traveler classes, a class of travelers equipped with autonomous vehicles, a traveler class comprising of human-driven vehicles
equipped with a route guidance and information system and a traveler class comprising of human-driven vehicles without any sort of
navigation equipment. The 1st traveler class is assumed to be fully compliant, while the 2nd traveler class may include non-compliant
human drivers, which would be subsumed in the 3rd class of travelers. We will compare prescriptive pre-trip guidance approaches,
including a predictive simulation-based approach, Incremental Route Planning (IRP), which comprises 2 steps, forecasting and path
set computation/assignment, for the 1st traveler class, and Proxy Regret Matching (PRM), a non-predictive strategic learning-based
approach, which provides a distribution of regional paths to be assigned based on their estimated average regret, for the compliant
segment of the 2nd traveler class. Finally, we implement an extended version of Multinomial Logit-based Routing (MLR), which gives
the multinomial logit-based Dynamic Stochastic User Equilibrium, DSUE for brevity, representing a more realistic route choice
behavior for the non-compliant segment of the 2nd traveler class and the 3rd traveler class of unequipped human-driven vehicles,
both characterized by imperfect travel time perception, which informs travelers’ decision at the time of departure in such a way, that
no unilateral deviation will lead to a decrease in their imperfectly perceived travel time. Yildirimoglu and Geroliminis (2014)
introduced a region-based Dynamic Traffic Assignment model for a regional network and achieved DSUE conditions through im-
plementation of the Method of Successive Averages, MSA, for brevity. They were able to demonstrate that congestion was accurately
described by developed regional dynamics with results similar to link-based dynamics, which otherwise might be unavailable.
Yildirimoglu et al. (2015), inspired by Ramezani et al. (2015), extended their work by introducing heterogeneity in the MFD-based
traffic model, as well as the option to have paths containing the same region more than once and most importantly route guidance
based on Dynamic System Optimum regional flow distribution. However, their method was not intended as a traffic management
strategy for too many regions. Our framework focuses on computational efficiency. While MSA takes overlapping paths into con-
sideration, a noted weakness of the Multinomial Logit-based Routing model, at a regional setting, path overlap is not a deciding
factor. We consider 2 distinct market penetration rates, one for the adoption of private autonomous vehicles as the primary mode of
transport, assigned to the 1st traveler class (MPR1), and one for the equipment of route guidance information systems utilizing
strategic learning-based routing assigned to the 2nd traveler class (MPR2). Subsequently, after the respective market penetration
rates for the different traveler classes have been set, we define a rate of non-compliance (NC) for the 2nd class of human-driven
vehicles and group the non-compliant segment together with the remainder of the vehicle population, classified as the 3rd traveler
class, resulting in rate (MPR3). The diagram shown in Fig. 1 depicts the aforementioned classification process.

The rest of this paper is organized in the following manner. In Section 2, we present a multi-class extension of the Network
Transmission Model, a region-based dynamic traffic model that employs the Urban-scale MFD to accurately describe the traffic
dynamics for homogeneously congested regions. In Section 3, we present an extension of a multinomial logit-based routing approach,
a non-predictive routing approach which employs proxy regret matching, and introduce a predictive routing approach which em-
ploys simulation-based forecasting. We also introduce a market penetration scheme for all aforementioned routing approaches. In
Section 4 we present our network setup. We then use our simulation results to compare the performance of each approach applied
separately to our network setup. We subsequently test for a wide range of market penetration rate combinations, whereupon we apply
the respective routing approaches to the network simultaneously and comment on the performance results. In Section 5 we present
our conclusions and possible future work.
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2. Multi-class network transmission model

In this section, we introduce our multi-class extension of the Network Transmission Model, originally developed by Knoop and
Hoogendoorn (2014) and most recently implemented and validated by Knoop et al. (2016) in the real world city of the Hague. In
Section 2.1, we provide the notation and terminologies used in our model. In Section 2.2, we provide a description of the multi-class
regional traffic model.

2.1. Notations and terminologies

Let a directed graph =G K A( , ) denote the regional traffic network, which comprises a set of regionsK and a set of interregional
boundaries A . The following notations will be used to describe our multi-class extension of the NTM:

Sets:
K : set of nodes, = m| |K , representing homogeneous regions;

⊆ ×A K K : set of arcs, = l| |A , representing interregional boundaries;
⊂oK K : set of origins, = o| |oK ;
⊂dK K : set of destinations, = d| |dK ;

= ⩾ > ⇔ ∈×C c c i j[ ] 0, 0 ( , )i j
m m

i j, , A , the boundary capacity matrix;
b e,P : set of all paths from origin b to destination ∀ ∈ ∀ ∈e b e, ,o dK K ;
≔ ⋃ ∈e b b e,oP PK , set of all paths with destination ∀ ∈e b, oK ;
≔ ⋃ ∈b e b e,dP PK , set of all paths with origin ∀ ∈b e, dK ;
≔ ⋃b eP P P , set of all possible paths;

Ω: set of classes, representing different types of travelers;
iZ : the set of links in region ∈i K ;

H : set of discrete time steps.
Index variables:

∈i j, K : region indices, where ∈i j( , ) A , i.e., region i is adjacent to j;
∈b oK : origin region index;
∈e dK : destination region index;
∈p b e,P : path from origin b to destination e;
∈ω Ω: traveler class index;
∈z iZ : link that belongs to region i;
∈h H : discrete time index.

Traffic network parameters:
∈ +vi f,  : average speed (km/h) for region i under free-flow conditions;
∈ +ni crit,  : critical accumulation (veh) for region i;
∈ +Qi crit,  : average network flow (veh·m/h) for region i at capacity flow;

λz : number of lanes on link ∈z iZ ;
Λz: length of link ∈z iZ ;
TH : simulation time (s);

Fig. 1. Process of assigning vehicle population to multiple traveler classes.
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Ts: sample time (s);
= ⌊ ⌋H T T/H s : simulation horizon.

Traffic state variables:
n h( )z : number of vehicles on link ∈z iZ at step h;

= ∑ ∈n h n h( ) ( )i z ziZ , accumulation in region i i at step h;
n h ω( ):i b e

ω
, , -class, b-origin, e-destination specific accumulation in region i at step h;

ζ h ω( ):b e
ω
, -class, b-origin, e-destination specific travel demand at departure time step h;

= ∑ ∈ζ h ζ h b( ) ( ):b e ω b e
ω

, Ω , -origin, e-destination specific travel demand at departure time step h;
Q n h( ( ))i i : approximation function to the Urban-scale MFD, according to Drake et al. (1967);
v n h( ( ))i i : average network speed approximation function, according to Drake et al. (1967);
P h( )j : representing the supply, similar to Knoop and Hoogendoorn (2015);
β h p( ):i j b e

p ω
, , ,

, -path, ω-class, b-origin, e-destination specific branching rates from region i to j, at step h, where ∈p b e,P

Z h( )i j, : unrestricted demand from region i to j at step h;
∼Z h( )i j, : effective demand from region i to j at step h;
∼Z h ω( ):i j b e

ω
, , , -class, b-origin, e-destination specific demand from region i to j at step h;

Z h( )j : total demand to region j at step h;
∊ h( )j : the flow proportion that can travel into region j;
χ h( )i : the minimum of the exit flow proportions;
q h( )i j, : outgoing flow from region i to j at step h;

= ∼q h χ h Z h ω( ) ( ) ( ):i j b e
ω

i i j b e
ω

, , , , , , -class,b-origin, e-destination specific outgoing flow from region i to j at step h.

2.2. Model description

In order to describe region-based traffic dynamics, we introduce a multi-class extension the NTM (Network Transmission Model).
The NTM describes a traffic network at the urban traffic level as well as at the aggregated regional traffic level. NTM takes into
account the dynamics of a network as expressed through the Urban-scale MFD, as well as the limited capacity of the boundaries
between regions (Knoop and Hoogendoorn, 2015). The NTM combines the concepts of the Cell Transmission Model by Daganzo
(1994), CTM for brevity, and a node model by Jin and Zhang (2003) and applies it to a model describing urban traffic network
dynamics at a regional level. Unlike the regional dynamic traffic model developed by Geroliminis et al. (2013) that explicitly models
internal traffic demand, NTM accounts for internal traffic demand implicitly. Concretely, while, for a supply/demand scheme, re-
gional supply values work similarly to Daganzo’s CTM, regional demand values follow the curve of a regional performance function,
an abstraction of a link performance function, corresponding to a scaled-down Urban-scale MFD (Gonzales, 2015). It should be noted
that, even though this modeling approach omits explicit modeling of uncontrollable internal flows, leading to faster, if less accurate,
analysis of the traffic management effects on the network, it also presents with some limitations, which might inhibit adoption in real-
life applications with high accuracy requirements. It is worth mentioning that, when it comes to model accuracy, explicit modeling of
internal flows, as is the case in the framework of Geroliminis et al. (2013), as well as works extending said framework, see Haddad
and Shraiber (2014), Ramezani et al. (2015), Yildirimoglu et al. (2015), is the superior modeling methodology. Our multi-class
extension introduces class/origin/destination specific accumulations, as well as pre-trip information in the form of regional path/
class branching rates for each respective origin/destination pair, adjusting the traffic dynamics accordingly. As mentioned in the
previous section, in our case, classes refer to travelers represented by different types of routing approaches. In short, the dynamics of
each region ∈i K are described as follows:

∑ ∑ ∑+ = +
∈ ∈ ∈

n h n h( 1) ( 1),i
e b ω

i b e
ω

Ω
, ,

d oK K (1)

where total accumulation +n h( 1)i for region i at step +h 1 comprises all ω-class, b-origin, e-destination specific accumulations
+n h( 1)i b e

ω
, , , which in turn can be derived from the following dynamic equation:

∑ ∑ ∑+ = +
⎛

⎝
⎜ −

⎞

⎠
⎟

∈
∈ ∈ ∈ ∈

n h n h T
λ

q h q h( 1) ( )
Λ

( ) ( )i b e
ω

i b e
ω s

z
z z j i j

j i b e
ω

j i j
i j b e
ω

, , , ,
,( , )

, , ,
,( , )

, , ,

iZ

K A K A
(2)

where q h( )j i b e
ω
, , , and q h( )i j b e

ω
, , , are the incoming and outgoing flow rates, respectively, for class ω, with origin b and destination e, at step

h. More concretely, the urban traffic network is first partitioned into homogeneously congested regions and we derive the Urban-scale
MFD for each region. Partitioning into homogeneously congested regions has been investigated extensively in the last 5 years, starting
with the seminal paper by Ji and Geroliminis (2012) and followed by several others (Ji et al., 2014; Lentzakis et al., 2014;
Saeedmanesh and Geroliminis, 2016, 2017). Both simulation-based and real-life datasets have been used to derive homogeneously
congested regions, either statically or dynamically. As mentioned previously, Geroliminis et al. (2013) developed a regional dynamic
traffic model, which was extended in Yildirimoglu and Geroliminis (2014), Ramezani et al. (2015), Yildirimoglu et al. (2015) to
model and control for heterogeneity in MFD at the regional level. However, Ramezani et al. (2015) and Yildirimoglu et al. (2015)
perform a secondary partition of each heterogeneous region into homogeneous subregions, where MFD functions are assumed to be
dependent only on the subregional accumulation. In our case, we would select an appropriate partitioning implementation,
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dependent on the type of data available, as well as other parameters of our given network, so as to achieve the best possible results for
two features, intraregional link density variability and regional compactness and cohesion. In our multi-class extension of the NTM,
we have selected to represent the Urban-scale MFDs with an approximation function according to Drake et al. (1967). Specifically,
the Urban-scale MFD of region i with accumulation ni, free speed vi f, and critical accumulation value ni crit, , is

⎜ ⎟⎜ ⎟= ⎛

⎝
− ⎛

⎝
⎞
⎠
⎞

⎠
Q n h n h v ξ n h

n
( ( )) ( ) exp ( )

i i i i f
i

i crit

α

,
, (3)

Drake et al. (1967) also provide an average network speed approximation function,

⎜ ⎟⎜ ⎟= ⎛

⎝
− ⎛

⎝
⎞
⎠
⎞

⎠
v n h v ξ n h

n
( ( )) exp ( ) ,i i i f

i

i crit

α

,
, (4)

which is used to derive regional travel times. In literature, several simplistic approximations of MFDs in the form of triangular or
trapezoid functions appear for theoretical examples (Daganzo et al., 2011; Gayah et al., 2014) and even some real-life applications
Knoop et al. (2016). In recent literature (Geroliminis et al., 2013; Knoop and Hoogendoorn, 2013; Ramezani et al., 2015), 3rd order
polynomial functions whose coefficients are tuned based on real-life data have been shown to be more accurate approximations for
MFDs of specific regions. The approximation function by Drake et al. (1967) provides a good compromise between accuracy and
computational effort. These approximation functions have been shown to be suitable for describing the dynamics of regional traffic
networks (Dixit et al., 2007; Knoop et al., 2012; Hajiahmadi et al., 2013). Following (Knoop et al., 2012; Hajiahmadi et al., 2013), we
set =ξ 0.5 and =α 2, however ξ α, can be amenable to tuning, to better fit the Urban-scale MFD derived from real-life data. The
interregional flow at each stage is determined by the Urban-scale MFD, separated in demand (unrestricted)

∑ ∑ ∑ ∑=
⎛

⎝
⎜⎜

⎛

⎝
⎜⎜

⎛

⎝
⎜

⎞

⎠
⎟
⎞

⎠
⎟⎟
⎞

⎠
⎟⎟∈ ∈ ∈ ∈

Z h
n h

n h β h Q n h( ) 1
( )

( ) ( ) ( ( ))i j
i e b ω

i b e
ω

p
i j b e
p ω

i i,
Ω

, , , , ,
,

d o b e,K K P (5)

and supply

= ⎧
⎨⎩

⩽
>

P h
Q n h n
Q n h n h n

( )
if ( )

( ( )) if ( )j
j crit j j crit

j j j j crit

, ,

, (6)

where regions ∈ ∈i j i j, ,( , )K A , at step h. In this supply/demand formulation, supply P h( )j and total demand Z h( )j for region j at step
h, can be described throughQ n h( ( ))j j corresponding to the Urban-scale MFD approximation function described above. Then, similarly
to CTM, we can consider the supply P h( )j equal to regional capacity flow Qj crit, , when vehicle accumulation n h( )i is below the critical
value ni crit, and equal to the scaled-down Urban-scale MFD otherwise. Unlike the CTM, where demand increases in tandem with the
beyond-critical-value increase to cell density, regional demand Z h( )i j, is reduced when vehicle accumulation n h( )i increases beyond
ni crit, . In this manner, internal traffic demand for each region and the resulting restriction on the regional outgoing flow are taken into
consideration indirectly. For the unrestricted demand Z h( )i j, , the boundary capacity between two regions also comes into play,
resulting in effective demand

=∼Z h Z h c( ) min{ ( ), },i j i j i j, , , (7)

from region i to j at step h. Effective demand can be further decomposed into ω-class, b-origin, e-destination specific demands from
region i to j at step h in the following manner:

∑=
⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

∼
∼

∈

Z h
n h

n h β h Q n h
Z h
Z h

( ) 1
( )

( ) ( ) ( ( ))
( )
( )i j b e

ω

i
i b e
ω

p
i j b e
p ω

i i
i j

i j
, , , , , , , ,

, ,
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After consolidating all incoming demands to region j into total demand
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we determine the flow proportion that can travel into region j as
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Subsequently, flow proportion

= ∊
∈ ∈

χ k h( ) min { ( )}i j i j
j

,( , )K A (11)

will be the same for all demands Z h( )i j, , under the assumption that traffic cannot freely transition from region to region, due to
spillback events on the boundaries as well as congestion within region i. If the flow is limited by the supply, region j receives flow
proportional to the demands converging to j. Tampere et al. (2011) observed that the approach selected by Jin and Zhang (2003),
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distributing flows proportional to the demand does not satisfy the conservation of branching rates requirement, however, in a
regional macroscopic flow setting, this is not necessary. Outflow from region i to j

= ∼q h χ h Z h( ) ( ) ( ),i j i i j, , (12)

which is assumed constant between time steps, is effectively the minimum of supply P h( )j and demand Z h( )i j, .
As described in the above equations, the main characteristic of our multi-class extension of the NTM is that, unlike the inter-

regional splitting rates of the original, our control variables are path-class-origin–destination specific branching rates, which allow for
path-based, rather than transition-based, assignment. Our problem’s pre-trip information dissemination structure, as presented in the
following section, is usually amenable to path-based route assignment (Garcia et al., 2000; Adler et al., 2005; Kaufman et al., 1998).
Concretely, in our multi-class dynamic traffic model, route guidance is implemented through control input variables ∈β h( ) [0,1]i j b e

p ω
, , ,

, ,
which represent p-path, ω-class, b-origin, e-destination specific branching rates from region i to j at step h, where ∈ ∈p ω, Ωb e,P . Let

i b e
p ω
, ,

,B be the collection of all feasible p-path, b-origin, e-destination specific branching rates in region i, associated with traveler class ω.
If a particular traveler class is characterized by non-compliance, as is the case for the 2nd class in our framework, with non-com-
pliance rates ∈ =NC [0,1]NCO , the effect of the route guidance provided on the resulting traffic patterns cannot be determined
analytically. Rather, we can describe the traffic patterns as a stochastic process over a probability space, whose sample space is

×i b e
p ω

NC, ,
,B O , with an induced event set ≔ 2 i b e

p ω
, ,

,
F B , which is a σ -algebra, and a probability map i b e

p ω
, ,

,S . Owing to this stochastic nature of
the branching rates for each region, it is extremely difficult, if still possible, to analyze the traffic conditions under different route
guidance approaches. For this reason, in this paper we will adopt a simulation-based approach to analyze the impact of three different
route guidance approaches on the traffic patterns and overall network performance, i.e., Multinomial Logit Routing, strategic,
learning-based routing method utilizing Proxy Regret Matching, and Incremental Route Planning, with different non-compliance
rates. It should also be mentioned, that some shortcomings, associated with the NTM, have also become part of our multi-class
extension of the NTM. Regarding possible turning restrictions occurring in a NTM implementation (Knoop et al., 2016), our multi-
class extension has already addressed the issue, as mentioned earlier, by virtue of replacing interregional splitting rates with path-
class-origin-destination specific branching rates, thus preventing the selection of infeasible routes by design. However, while real-life
traffic does not immediately disappear from the network once the assigned traveler demand reaches its destination, that does not
seem to be the case for NTM and by extension, for our modeling approach. Regarding this issue, for future implementations where
added realism is a prerequisite, parking spaces of predetermined capacity can be introduced for each regional destination, to address
the unrealistic, instant unloading of traveler demand from the network. This will require explicit modeling of intraregional flows, in a
similar manner to Geroliminis et al. (2013), Haddad and Shraiber (2014), Ramezani et al. (2015), Yildirimoglu et al. (2015), to
account for the fact that the assigned traveler demand for each destination region exceeds the corresponding parking space capacity.
A limitation appears in the regional supply Eq. (6), whose values can be considered conservative, when respective regional accu-
mulation is below the critical value, leading to underutilization of the corresponding region. This limitation could be addressed in
future implementations where increased accuracy is expected, by replacing the constant part of the piecewise supply Eq. (6) with a
linear or higher-order function and subsequently tuning the coefficients so as to maximize utilization of the corresponding region.

3. Methodological framework for region-based route guidance

Route Guidance and Information Systems’ primary objective is to improve drivers’ route choice by providing information about
prevailing traffic conditions (descriptive guidance), or directly prescribing routes which are guaranteed to have reduced travel times
(prescriptive guidance). Information about traffic conditions or prescribed routes can be passed along at the beginning of the trip
(pre-trip). Drivers can also receive updated information in discrete time intervals en-route to their destination, however, the focus of
this work will be on pre-trip information dissemination. For each origin-destination pair, a set of shortest paths is calculated and route
choice probabilities are assigned for the routes corresponding to the set of shortest paths. Based on this set of probabilities, a route is
appropriately prescribed to each departing traveler, representing the control input of a Route Guidance and Information System. The
accuracy of route travel time estimation plays an important role in the drivers’ compliance rate with the route guidance system. If the
route travel time estimation is based on currently prevailing or past traffic conditions, the guidance provided is considered non-
predictive. The majority of RGIS (Route Guidance and Information Systems) in use today employ non-predictive guidance. Predictive
route guidance employs travel time prediction, based on simulation-based forecasting of traffic conditions. The expected route travel
time predicted by the route guidance system will be closer to the experienced route travel time by the drivers than the instantaneous
travel time, which is based on current traffic conditions. In this paper, all routing methods presented, including the one introduced in
Lentzakis et al. (2016), have been extended to provide the possibility for vehicle passengers to be diverted to public transit, de-
pendent on prevailing or predicted traffic conditions. Following Liu et al. (2009), we assume that public transit capacity can ac-
commodate enough travelers that all public transit routes travel times are constant. For all origin-destination pairs, travel times on
public transit routes are assumed to be twice as long as the travel times for the corresponding regional routes, under free flow
conditions. This travel time difference takes into consideration possible traveler delays, when changing modes of transport, from
private vehicles to public transit.

3.1. Multinomial logit routing with public transit diversion

We first implement an extension of the multinomial logit choice model with Public Transit Diversion integration. Multinomial
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Logit Route choice model is used to represent self-interested driver behavior (Sheffi, 1985). This approach provides a Multinomial
Logit-based Dynamic Stochastic User Equilibrium (DSUE) for our regional network at every step, which can be used as a more
realistic reference case for traveler assignment with imperfect travel time information, during periods of recurrent congestion. We
assign a probability to each alternate path μ with travel time TTμ from a set of κ shortest paths, as follows:

=
∑

−

∈
−P μ κ e

e
( | )

θTT

ν κ
θTT

μ

ν (13)

where θ is a scale parameter associated with travel time uncertainty. It should be noted that the resulting probabilities are sensitive to
the units (h, min, s) selected for the travel times. In our case study, sample time is 10 s, hence, =θ 1

6 . We now extend the multinomial
logit route choice model to also account for the probability that vehicle passengers will choose to travel by public transit. While we
update the shortest path set for every region from the travel times based on the prevailing average speeds v h( )i , the public transit
paths from all origins to all destinations are assumed to have constant speed =v v0.5i PT i f, , and the public transit travel times are
calculated accordingly.

3.2. Strategic learning-based route guidance with public transit diversion

We now describe the use of a strategic learning algorithm called Proxy Regret Matching for non-predictive region-based route
guidance. This is an extension of the approach used in Lentzakis et al. (2016), with the additional feature of public transit diversion of
travelers at the origin, based on prevailing traffic conditions. We consider a repeated game where players, in this case origin regions,
are competing for different endpoints, in this case destination regions. The actions are probability distributions over the route choices
available for each origin region. For each destination region, at each stage of the repeated game, each origin region (player) selects a
set of routes (actions) ending at said destination, based on an empirical distribution of the player’s average past regrets. In a traffic
context, these routes are assigned from a RGIS to travelers within the region, according to their destination preferences. In the first
step of this routing method, we make use of an algorithm by Yen (1971) to find the sets of k-shortest paths which correspond to the
aforementioned route choices. These routes are updated according to the prevailing traffic conditions for each region in the network.
Inspired by Lauther (2004), in the second step of this routing method, we implement aggregated regional data preprocessing, so as to
increase shortest path calculation efficiency, but most importantly, integrate Public Transit Diversion to our approach. Concretely, for
any region ∈i K , true (1) or false (0) values are stored in a bit vector = ∈ ∀ ∈×f f i[ ] {0,1} ,i

m 1 KK . Each vector element fi is
assigned a true (1) value for any region > ∈ ∈i n h r n i h| ( ) , ,i PRM i crit, K H , with h representing the current time step and rPRM being a
threshold coefficient as a percentage of the critical accumulation, allowing for a more or less conservative Public Transit Diversion
mechanism. Subsequently, all regions = ∈i f i| 1,i K are excluded from all k-shortest path set calculations at time step h. If no such
path exists, users are diverted to public transit. In the third and final step, we derive the probability distributions for each set of k-
shortest paths following the procedure presented below, called Proxy Regret Matching. First we provide some definitions.

3.2.1. Repeated game
In a repeated game, each player tracks their past payoffs and computes the empirical average payoff for each action. Let the

origins be the players competing for each of the destinations. A repeated game in a traffic context can then be defined in the following
manner, ∀ ∈e dK :

A repeated game tuple 〈 〉U h, , ,o eK P where.

• oK : is the set of players representing the regions designated as origins

• ≔ ⋃ ∈e b b e,oP PK , representing the set of joint actions, where Pb e, represents the set of actions available to player ∈b oK . These can
be coded as e destination-specific route choices.

• →U :b eP  represents the utility function for player i dependent on the joint action of the players

• h represents the current stage of our repeated game

3.2.2. Regret matching
Regret matching algorithms aim to minimize the players’ respective regret for their selected actions (Hart and Mas-Colell, 2000).

Regret in this context refers to the difference in utility of playing a particular alternative action instead of their currently selected
action, given that other players’ selected actions are fixed. Players select their actions by drawing from a probability distribution
which is proportional to their positive regrets. Regret matching algorithms provide guarantees for convergence of the empirical
probability distribution to the set of correlated equilibria, however, said algorithms can be memory intensive, since, each player must
keep track of the strategies of all players at every period of play, as well as being able to compute their own utility for changing their
strategies during their past plays (Hart and Mas-Colell, 2000). This motivated us to consider Proxy Regret Matching as a less
computationally expensive alternative.

3.2.3. Proxy regret matching
Consider now that each player, after each period of play, knows only their own set of actions and their received utility but do not

know what is their utility function. They are not aware of what game is being played, i.e. the number of players, their respective
actions and payoffs. These are the assumptions of a modified Regret Matching algorithm, called Proxy Regret Matching. For a specific
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destination ∈e dK , the average Proxy Regret of player b for ∈y Pb e, to ∈z Pb e, at stage h
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with∑ == σ y( ) 1y
p

b
η

1
b , where σ y( )b

η denotes the play probability for player ∈b oK and η denotes the history of plays up to stage h. After
calculating the estimated average Proxy Regret, the player adaptively updates the probability of selecting actions to achieve higher
utility. If the player selects action y at stage h, the probability of selecting action z at stage +h 1 is approximately proportional to the
average Proxy Regret from y to z. The play probabilities of player b at stage +h 1 are assigned as follows
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and

∑= −+

∈ ≠

+σ y σ w( ) 1 ( )b
h

w P w x
b
h1

:

1

b e, (16)

where ∈ <δ γ[0,1], 0.25 and inertia parameter μ large enough to guarantee that >+σ y( ) 0b
h 1 .

In this approach, information provision, in the form of past proxy regret distribution, as well as shortest path set assignment, are
done in a decentralized manner, even though route selection is implicitly affected by the repeated game’s players, in our case the
origin regions. It should also be noted that Proxy Regret Matching converges to a distribution of approximate correlated equilibria,
however the computational and memory gains more than compensate for the loss in performance.

3.3. Incremental route planning method with public transit diversion

Finally, we will describe our predictive routing method, which is an extension of the dynamic forecast routing method presented
in Lentzakis et al. (2016). We present certain definitions and notations necessary for the detailed description of this method, including
the time-expanded network representation, first introduced by Ford and Fulkerson (1962). A particularly appealing property of time-
expanded networks is their flexibility, allowing for modeling of dynamic travel times dependent on respective regional time-varying
demand and/or supply. The size of regional networks, i.e. the number of regions, can implicitly depend on many factors, as the
network partitioning scheme is dependent on the Urban-scale MFDs, which in turn can be affected from network topology, traffic
signal settings and origin destination demand patterns (Knoop et al., 2014; Gayah et al., 2014). Compared to conventional urban
traffic networks, however, regional networks can be at least an order of magnitude smaller. Therefore, concerns regarding the
exponential time-expanded network size growth related to the problem input size do not significantly affect regional networks. For
the time-expanded networks, we first define a planning horizon = + + … +h h g h g h g{ , , 2 , , Γ }0 0 0 0H , where h0 is the vehicle de-
parture time, g is a small enough interval such that observed traffic conditions vary slowly and Γ a positive integer large enough such
that the entire planning horizon is covered. Subsequently, we propose a simulation-based forecasting approach to predictive region-
based routing. This approach consists of 2 steps, forecasting and shortest path set computation and assignment. Unlike our non-
predictive routing method, the forecasting step of our predictive routing method aggregates prediction information in a centralized
manner, while the subsequent shortest path set computation and assignment step is applied locally, for each respective origin des-
tination region pair.

1. The forecasting step involves:

• Introduction of new vehicles into the regional network based on time-dependent origin-destination Demand Matrix.

• Simulation of the forward movement of all currently routing vehicles using an extension of the NTM for the regional traffic
dynamics, throughout the planning horizon.

• Virtual vehicle trip generation, starting at the origin regions and assuming route selection according to multinomial logit
routing.
More concretely, we continue the simulation until all vehicles have finished their trips, as well as generate virtual vehicles on
origin regions that are assigned trips based on Multinomial Logit routing. Virtual vehicle trip generation allows for more
accurate travel time estimation, requiring, however, the computation and assignment of shortest paths to the demand generated
at the origin regions. Virtual vehicle trip generation also discourages the frequent use of origin regions as part of the route
assignment process.

2. For the shortest path set computation and assignment step:

• We first expand our original regional network graph =G ( , )K A to a time-expanded network representation =G ( , )K A ,
where = ∈ ∈i i h{ | , }hK K H a set of time-expanded regions and = ∈ + = ′ ⩽ ⩽ ′ ⩽ +′i j i j h x h h h h h g{( , )|( , ) , , Γ }h h

i j
h
, 0 0A A

a set of interregional time-dependent transitions along the set of boundariesA . Weight ∈xi j
h
, H is assigned, at time h, for time-

expanded regions ∈ ∈′ ′i j i j, ,( , )h h h hK A , as the number of time steps required for the departing vehicle to transition from
region i to j based on the travel times derived during the forecasting step, since the number of steps required for interregional
transition are time-varying.
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• For each origin region ∈b oK , the discrete time step = + ∈ +h h νg ν,0  represents vehicle departure time at origin time-
expanded region bh.For each destination region ∈e dK , the arrival time cannot be predetermined because it is dependent on
traffic conditions and the route selected from the κ-shortest paths.So we introduce a dummy destination time-expanded region
∅e , to represent trip completion with undetermined arrival time ∅. See Fig.2 for an example.

• The resulting graph G contains the set of all eligible paths ∅b e,hP from bh to ∀ ∈ ∈∅e b e, ,o dK K . Similarly to the non-predictive
routing approach utilizing Proxy Regret Matching, we implement aggregated regional data preprocessing, utilizing a bit vector

= ∈ ∀ ∈×f f i[ ] {0,1} ,i
m 1 KK to store true (1) or false (0) values.These vector values represent each region’s state of congestion

and are similarly used to increase shortest path calculation efficiency, but with one specific difference. If we
define = − = … +∼ ∼H H h h h H,Θ , , , where h is the current time step, a true (1) value is assigned for any region ∈i K , if time-
expanded region > ∀ ∈ ∈ ∈∅i n θ r n i p θ| ( ) , , Θθ

i IRP i crit
θ θ

b e, ,θP , where rIRP represents a threshold coefficient as a percentage of
the critical accumulation. Subsequently, the set of eligible paths ∅b e,hP contains only regions = ∈i f i| 0,i K . If no such path
exists, users are diverted to public transit.

• Finally, κ-shortest paths are found by applying an algorithm by Yen (1971) on the modified time-expanded network graph
=G ( , )K A , which contains only eligible paths. The κ-shortest paths are used to distribute the demand ζ h( )b e, departing origin

b with destination e at time step h.

3.4. Market penetration scheme

In this section, we will focus on mixed application of predictive and non-predictive types of prescriptive route guidance methods
with pre-trip information dissemination with the following assumptions:

• In each vehicle, vehicle-integrated navigation equipment (GPS device) is assumed to be present. The vehicle is able to receive
traffic state information and store a digital representation of the urban traffic network, as well as experienced travel times and
expected travel times for available regional routes.

• We assume that each departing vehicle can receive real-time pre-trip information in the form of prescribed routes, which are
dependent on prevailing or future traffic conditions, in 10-s intervals.

• We assume that each driver completely follows the route prescribed to them, selected from the alternative κ-shortest routes
provided at their origin region.

• For every origin-destination pair, public transit is available with capacity large enough so that travel times can be considered constant.

• We make use of a predictive routing method, in this case Incremental Route Planning (IRP), to represent the 1st class of travelers.

• We make use of a non-predictive routing method, in this case Proxy Regret Matching (PRM), to represent the compliant segment

Fig. 2. Time-expanded network representation.
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of 2nd traveler class drivers.

• We make use of Multinomial Logit Routing (MLR) to represent the non-compliant segment of 2nd class travelers drivers, as well as
the 3rd class travelers.

• Regarding the forecasting step of our predictive routing method, when applied simultaneously with other methods, we consider
two scenarios. In the first scenario (S1), we assume that the 1st traveler class make use of privately-owned autonomous vehicles.
The information regarding the routes taken from travelers belonging to the 2nd and 3rd classes is unavailable to them. In the
second scenario (S2), we assume that the 1st class travelers use a one-way, ride-sharing service, which employs publicly-owned
autonomous vehicles. The information regarding the routes taken from 2nd to 3rd class travelers is assumed to be provided to
them from the transportation authority in the form of historical or real-time data, or a fusion thereof.

Concretely, in (S1), starting from the beginning of the forecasting simulation, we assign trips based on Multinomial Logit Routing
to all departed vehicles, which are not using our predictive routing method. Thus, our forecasting step takes into consideration the
fact that the routing approaches used by proprietary route guidance and information systems are unknown and can only be modeled
by MLR. Scenario (S2) is modeled during the forecasting step as 1st traveler class possessing complete information regarding the 2nd
and 3rd class travelers’ route choices up until the current time step. Public transportation service employing autonomous vehicles in a
similar manner to (S2) is already undergoing trials in the city-state of Singapore (Illmer, 2016).

The aforementioned assumptions are considered to hold for large metropolitan areas and are expected to be commonplace for
most urban areas in the near future. As justification regarding our selection of routing method for each traveler class, we make the
following arguments.

(a) We make use of a non-predictive routing method, based on strategic learning, to represent the compliant segment of 2nd traveler
class drivers, so as to account for the type of route guidance and information systems currently in use by the majority of human-
driven vehicles. We assume that consumer inertia will ensure that this type of guidance will still be employed on metropolitan
areas, at least in the foreseeable future.

(b) We make use of a predictive routing method, which employs simulation-based forecasting, to represent the 1st class of travelers,
so as to account for the type of route guidance and information systems expected to be installed on autonomous vehicles.

(c) Finally, we make use of multinomial logit routing to represent the non-compliant segment of 2nd class travelers, as well as the 3rd
class travelers, which we assume select their routes based on individual preference and past experience, since their route travel
time perception is imperfect.

3.5. Network performance benchmarks

We now define several performance metrics by which we will try to compare the effects of each region-based routing method on
the regional network performance:

• = ∑ ∑ ∑= ∈ ∈( )T λ n hΛ ( )s h
H

i z z z iTVT 1 i
C

K Z
, the Total Vehicle Travel time for all regions

• = ∑ ∑ −= ∈ v n h v n h( ( ( )) ( ( )))h
H

i j i i j jv 1 ,
22C

K
the sum of squares of average regional speed variabilities for all regions

• PTDC , Public Transit Diversion, i.e., the fraction of total demand generated throughout the simulation, which is diverted to Public
Transit

• ITRC , Incomplete Trips Rate, i.e., the fraction of total demand generated throughout the simulation, which has not completed their
trips by the end of the simulation

• ATTC , the Average Traveling Time for each traveler on the regional urban network

The total vehicle travel time can be found using the total number of vehicles arriving at the region over a defined time interval Ts.
The speed variability metric measures how evenly traffic load is distributed and, implicitly, demonstrates the phenomenon of build
up of congestion to capacity in some regions, while other regions receive very little traffic. The performance metric PTDC represents
the number of potential travelers unable to utilize the urban network, as a fraction of the number of vehicle requests from all origins
to all destinations throughout the simulation horizon. Since the speed selected for public transit is lower than the average speed
corresponding to the critical accumulation value, this metric is able to demonstrate indirectly the aggregate cost of network un-
derutilization due to overcritical congestion levels. The Incomplete Trips Rate ITRC implicitly showcases the network throughput
performance. Finally, the Average Traveling Time ATTC is calculated as the weighted average of total travel time for all vehicles and
provides an easily quantifiable measure of individual traveler benefits obtained through the introduction of autonomous (1st class)
and RGIS-equipped (2nd class) vehicles.

4. Simulation results

A diamond-shaped grid network is considered for implementation of our extension of the NTM. The network consists of 16
regions, with an area of 25 km2 (5× 5) for each region, as shown in Fig. 3. It should be noted that, as the focus of this paper is on the
interaction of varied routing methods, we have opted for a less sophisticated network test case, where the Urban-scale MFDs for all
regions are identical.
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The homogeneous regions are each described by an Urban-scale MFD with critical accumulation =n 25i crit, veh/km, region
network length∑ =∈ λ Λ 10z z ziZ km and free flow speed =v 45i f, km/h, ∀ ∈i K . Capacity along the boundaries is =c 2000i j, veh/h/
lane, ∀ ∈ ∈i j i j, ,( , )K A . For each region i, all regions j such that ∈i j( , ) A are defined as the ones that are in the northwest-southeast
or northeast-southwest directions with respect to the location of the region i. The demand (veh/h) for each origin-destination pair is
shown in Table 1. We introduce disturbance to the demand through time-varying factor multiplication to increase the level of realism
of our simulations. At each time step, the demand values are multiplied by a uniformly distributed random number with mean value 1
and variance 0.1. The simulation horizon H=2h 30min or 9000 s. The sample timeTs =10 s. It should be noted, that in our case, we
use prescriptive route guidance with pre-trip information dissemination. This means that, contrary to the case of en-route guidance,
the drivers are not the ones updated, rather, the origin regions are updated regarding the traffic conditions every 10 s and drivers at
the current departure time h are assigned the corresponding updated routes. For the 2nd class of travelers using Proxy Regret
Matching routing, we test for non-compliance rates ∈NC {0%,50%,70%}. These values might be viewed as appropriately chosen, given
that in previous studies, non-compliance rates were shown to be dependent on expected travel time reliability and at the aggregate
level, travel time estimation is expected to be less accurate than at the individual link route guidance case. We assume that threshold
coefficient =r 1.0IRP for the Public Transit Diversion mechanism in IRP (Incremental Route Planning) routing and similarly =r 1.0PRM

for PRM (Proxy Regret Matching) routing. We ran 10 replications for each routing approach and took the average of each respective
performance metric.

Fig. 3. Layout of the 4×4 regional network, where green squares and red circles denote origins and destinations, respectively. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Table 1
Origin destination demand matrix.

Demands (veh/h)
Origin Destination

Region 2 Region 8 Region 9 Region 14

Region 1 400 720 700 1200
Region 4 760 560 400 560
Region 11 680 480 520 520
Region 16 800 400 400 720
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4.1. Results for application of each individual route guidance approach

We compare each routing method when it is applied to the entire network individually. That would mean all travelers use the
same routing approach, or in market penetration scheme terms, MPR=100%. We also introduce alternate rates

∈MPR {10%,30%,50%,70%,90%}, to showcase the performance robustness of the predictive and non-predictive routing approaches,
when compared to MLR (Multinomial Logit Routing), which we designate as our realistic route choice model for self-interested
travelers with imperfect information, i.e. unreliable travel time estimation. Assuming that MPR of the vehicle population employ IRP
or PRM, while −MPR(100% ) employ MLR, representing vehicles which are not equipped with RGIS (Route Guidance and Information
Systems). The following Table 2 presents performance metric results for IRP, PRM and MLR routing methods integrated with Public
Transit Diversion, each with a market penetration rate MPR=100%:

As is evident from the results from Table 2, IRP outperforms all other routing methods. This, of course, is to be expected, since IRP
belongs to the predictive routing approach category, which means that travel time estimation accuracy is the highest amongst all
methods compared. PRM finds itself in the middle, performing better than MLR in most metrics, but worse than IRP with respect to all
metrics. This result is also consistent with our expectations, since PRM belongs to non-predictive routing approach category, meaning
that travel time estimation accuracy is worse than it would be for any predictive routing approach. As expected, the worst performing
routing method, when individually applied to the regional network, i.e. the respective market penetration rate MPR=100%, is the
MLR routing method. MLR under-performs in all performance metrics except for the Public Transit Diversion metric CPTD. This has to
do with the stochastic nature of the Public Transit Diversion Mechanism for MLR, which is simply represented by an alternate route
choice with constant travel time for each corresponding Origin-Destination pair.

Even if we compare to the performance of IRP and PRM with varying degrees of market penetration, we observe that the MLR still
performs the worst in the majority of performance metrics, compared to the implementations of IRP and PRM with the lowest market
penetration rates (10%). This is to be expected, since MLR travelers’ behavior is characterized by self-interest, as well as imperfect
travel time information provision. More specifically, from Table 3 we can observe that for all combinations of market penetration
rates ⧹MPR MPRIRP MLR, (S2) scenario results are better than the respective results for scenario (S1). That is to be expected, since the
information provided during (S2) is considered to be perfect, when it comes to the route choices of travelers not employing IRP and
subsequently, the travel time estimation accuracy is higher. Finally, from Table 4 we can see that IRP performs consistently better
than PRM, for respective market penetration rate combinations. Even for ⧹ = ⧹MPR MPR 30% 70%IRP MLR for both (S1), (S2), we can see
that most performance metric results are better than for PRM with a market penetration rate =MPR 100%PRM .

Based on the results from Tables 2–4, we decided to use MLR as our reference routing method and measure the performance gains
of IRP, for scenarios (S1), (S2), as well as PRM for various non-compliance rates ∈NC {0%,50%,70%}. The performance metric we
derive for said comparison is described in Eq. (17) as the weighted average of all performance metric ratios.

Table 2
Comparison of network performance for each routing method when it is applied to the entire network individually, i.e. MPR=100%.

MPR=100% C (veh·s)TVT C (km /h )v2 2 2 CPTD (%) CITR (%) C (s)ATT

IRP 1.410e+08 1.189e+06 18.44 0.01 1565.2
PRM 1.744e+08 6.603e+06 33.08 10.24 2359.9
MLR 2.428e+08 1.187e+07 26.20 27.60 2972.4

Table 3
IRP (Incremental Route Planning) routing for various MPR (Market Penetration Rates) and for scenarios (S1), (S2).

Scenario (S1)

MPRIRP⧹MPRMLR( ⧹% %) 90⧹10 70⧹30 50⧹50 30⧹70 10⧹90

C (veh·s)TVT 1.445e+08 1.447e+08 1.545e+08 1.812e+08 2.146e+08

C (km /h )v2 2 2 1.208e+06 1.144e+06 1.698e+06 5.258e+06 9.742e+06

CPTD (%) 17.35 15.32 13.28 18.46 26.01
CITR (%) 0.10 0.01 0.87 6.34 17.68
CATT (s) 1584.1 1549.1 1605.6 1949.0 2566.2

Scenario (S2)

MPRIRP⧹MPRMLR( ⧹% %) 90⧹10 70⧹30 50⧹50 30⧹70 10⧹90

C (veh·s)TVT 1.435e+08 1.450e+08 1.529e+08 1.768e+08 2.131e+08

C (km /h )v2 2 2 1.191e+06 1.156e+06 1.289e+06 4.674e+06 9.654e+06

CPTD (%) 17.38 15.47 13.07 17.24 25.61
CITR (%) 0.05 0.0 0.0 5.30 18.15
CATT (s) 1574.0 1553.1 1587.3 1870.2 2527.6
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where ∈ ⧹ ⧹ ⧹ ⧹g IRP S IRP S PRM NC IRP S PRM NC MLR IRP S PRM NC MLR{ ( 1), ( 2), ( ), ( 1) ( ) , ( 2) ( ) } and =W w w w w w{ , , , , }TVT v PTD ITR ATT a set of
appropriate weights to denote the importance we place on the respective performance measures. In our test case, all weights are set to

= = = = =w w w w w 1TVT v PTD ITR ATT .
After we calculate the RWAC values for all routing methods other than MLR, we can derive the Performance gain – Market

Penetration curves for non-predictive routing method PRM, as well as predictive routing methods IRP (S1) and IRP (S2), see Fig. 4.
We can easily observe that, for IRP, overall network performance exceeds that of PRM in all corresponding degrees of market
penetration. Performance gains of PRM seem to increase with MPR values up to 90%. When MPR=100%, there is a 2.2%

Table 4
PRM (Proxy Regret Matching) routing with for various MPR (Market Penetration Rates) assuming that NC=0% non-compliance rate.

Non-compliance NC=0%

MPRPRM⧹MPRMLR( ⧹% %) 90⧹10 70⧹30 50⧹50 30⧹70 10⧹90

C (veh·s)TVT 1.729e+08 1.768e+08 1.825e+08 2.001e+08 2.239e+08

C (km /h )v2 2 2 6.223e+06 6.505e+06 7.555e+06 9.189e+06 1.106e+07

CPTD (%) 31.98 32.26 31.04 30.53 30.91
CITR (%) 9.01 5.36 5.78 9.68 19.93
CATT (s) 2302.9 2369.6 2383.0 2597.7 2914.0

Fig. 4. Performance gain – Market penetration curves of PRM, IRP (S1), IRP (S2), for penetration rates ∈MPR {10%,30%,50%,70%,90%}.
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performance loss compared to MPR=90%. This can be attributed to the fact, while PRM at various degrees of market penetration
will improve overall network performance, having a percentage of self-interested travelers using MLR, allows for higher network
resource utilization. In the case of MLR, all available routes will be used with some probability, however small, and never zero, thus
distributing demand along alternative routes that might not have been considered by PRM. We can also observe that for PRM, the
weighted average values of ITRC peak at MPR=70%. From our results for individual routing method performance, which have been
omitted for brevity, as the MPR for PRM increases, the individual ITR values for PRM also increase, while we observe the si-
multaneous converse effect for travelers using MLR. So MPR=70% could be described as the intersection of the increasing ITR values
for PRM and decreasing ITR values for MLR. In the case of scenarios (S1), (S2) for IRP, performance gains seem to increase in tandem
with the degree of market penetration, however we see that for ⩾MPR 50%, performance gradually decreases until, at MPR=100%,
it reaches a value of ≈ 47%RWAC which lies in between values achieved for MPR=50% ( ≈ 50%RWAC ) and MPR=30%
( ≈ 35%RWAC ). These results demonstrate that performance gains are dependent on the forecasting step methodology we follow. While
higher degrees of market penetration are required for better overall network performance, the virtual vehicle generation and route
assignment leads to less accurate travel time prediction, owing to the fact that we employ MLR for virtual vehicle route assignment.
Therefore, having fewer unequipped vehicles as part of the vehicle population leads to diminishing performance gains. Nevertheless,
performance robustness for both IRP (S1) and IRP (S2) is assured, as is evident from the consistent gain in performance for every
degree of market penetration.

Figs. 5–7 show vehicle accumulation levels per region starting from 1 h (3600 s) of the simulation up until 1 h 40min (6000 s)
with 5min intervals, for 100% market penetration for each routing method (MLR, PRM, IRP) with region numbering as in Fig. 3. This
particular simulation time period was selected because it contains the simulation midpoint and the effect each routing method has, is
easy to discern.

As is evident from Figs. 5–7, during these 40min of simulation, IRP manages to keep vehicle accumulation levels below 500 veh.
for all regions, in addition to maintaining a more even distribution of vehicles over all regions. PRM is able to maintain vehicle
accumulation levels below 500 vehicles for 14 out of 16 regions, however the vehicle distribution is not even throughout the regional
network. As is expected, MLR is not able to maintain vehicle accumulation levels below 500 veh. for 5 out of 16 regions, while the
vehicle distribution over all regions is markedly uneven, compared to IRP and PRM. Based on our network setup, regional vehicle
accumulation levels over 500 veh. indicate that regions are congested. Vehicle distribution is an important indicator of network
resource utilization. Homogeneous vehicle distribution over all regions signifies higher network resource utilization.

4.2. Comparison of route guidance approaches in mixed class application with various combinations of market penetration rates

We have several mixed class application cases with different combinations of market penetration rates, MPR1 and MPR2, for 1st
and 2nd traveler classes respectively. For the prescriptive, pre-trip route guidance provided to the 2nd class of travelers, we extend
the compliance model originally suggested by Papageorgiou (1990) whereby a certain fraction of 2nd class travelers will comply to
the advice provided and the remaining fraction will disregard it. Concretely, assuming non-compliance rate NC for the 2nd class of
travelers, we can say that the travel demand for each traveler class at departure time h for every origin-destination pair,
∀ ∈ ∈b e,o dK K is:

=ζ h MPR ζ h( ) 1· ( )b e
IRP

b e, , (18)

Fig. 5. Vehicle accumulation for MLR from 1 h to 1 h 40min of the simulation, at 5 min intervals, in regions 1–16.
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= −ζ h MPR NC ζ h( ) ( 2 )· ( )b e
PRM

b e, , (19)

= − + −ζ h MPR MPR NC ζ h( ) (1 ( 1 ( 2 ))· ( )b e
MLR

b e, , (20)

We selected 3 market penetration rates which seem consistent with experts’ predictions regarding the adoption of autonomous
vehicle technology (IEEE, 2012). If we make an approximate backwards extrapolation, we can assume MPR1=70% by early 2040,
MPR1=40% by early 2030 and MPR1=10% by early 2020. The market penetration values of 2nd traveler class MPR2 in each
mixed class routing scenario are MPR2= ∈ϕ ϕ, {10%,40%,70%}10 10 , for MPR1=10%, MPR2= ∈ϕ ϕ, {40%,60%}40 40 , for MPR1=40%
and MPR2= ϕ70=30%, for MPR1=70%. Obviously, in the last 2 scenarios, for =ϕ 60%40 and =ϕ 30%70 , we assume that the 2nd
traveler class comprises the maximum possible percentage such that MPR1+MPR2=100%. We also test for equal market pene-
tration rates MPR1=MPR2=MPR3=33.3%, so as to more accurately evaluate the overall network performance, when the degree
of penetration does not affect the result. For the 2nd class of travelers, we test for non-compliance rates ∈NC {0%,50%,70%}. As before,
we assume that threshold coefficient =r 1IRP for the Public Transit Diversion mechanism in IRP routing methods and =r 1PRM for
PRM routing method. Similar to Figs. 5–7, Fig. 8 demonstrates regional vehicle accumulation levels for a mixed application of IRP,
PRM and MLR with equal market penetration rates MPR1=MPR2=MPR3=33.3%, during the same simulation time period of
40min as mentioned before. Table 5 presents individual performance metric results for each routing method in a mixed application of

Fig. 6. Vehicle accumulation for PRM from 1 h to 1 h 40min of the simulation, at 5min intervals, in regions 1–16.

Fig. 7. Vehicle accumulation for IRP from 1 h to 1 h 40min of the simulation, at 5 min intervals, in regions 1–16.
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IRP, PRM and MLR with equal market penetration rates MPR1=MPR2=MPR3=33.3% for non-compliance rates
∈NC {0%,50%,70%} and scenarios (S1), (S2). Similar to earlier, we selected this market penetration rate combination so as to rate the

individual performance of each routing method, where the degree of penetration plays no role for the results, but PRM’s non-
compliance rate is also evaluated. Table 6 presents individual performance metric results for each routing method in a mixed
application of IRP, PRM and MLR with market penetration rates MPR1=MPR2=10% and MPR3=80% for non-compliance rates

∈NC {0%,50%,70%} and scenarios (S1), (S2). We selected this particular market penetration rate combination to demonstrate the
value of IRP in a mixed class application setting with very low market penetration for both 1st and 2nd class travelers. Table 7
presents performance gain results for all market penetration rate and non-compliance rate combinations mentioned above for mixed
application of IRP (S1), IRP (S2), PRM (NC) and MLR. It should be noted that, due to space considerations, we will focus our
individual performance metric results analysis on the case of equivalent market penetration rates as well as the case where MPR1 and
MPR2 are the lowest market penetration rates in a mixed class application setting. More specifically, MPR1=MPR2=10% and
MPR3=80%. It should be stated that individual performance metric results are used to derive all the performance gain results as
presented in Table 7.

As is evident from Fig. 8, regional vehicle accumulation levels never exceed 500 veh., however, compared to an application of IRP
with MPR=100%, as seen in Fig. 7, vehicle distribution over all regions appears to be more uneven. As a general observation from
Table 7, we can see that for most market penetration rates for (S2) and when MPR1=40% for (S1), when non-compliance rate NC is
higher, performance is the highest. This can be attributed to the fact, that, during the forecasting step of IRP, all virtual vehicles

Fig. 8. Regional vehicle accumulation for IRP⧹PRM⧹MLR from 1 h to 1 h 40min of the simulation, at 5 min intervals.

Table 5
Comparison of individual performance metrics for each routing method when it is for a mixed application of IRP, PRM and MLR with equal market penetration rates
MPR1=33.3%, MPR2=33.3(1−NC)%, MPR3=33.3(1+NC)% with NC=0%, 50%, 70% for scenarios (S1), (S2).

MPR1=33.3%, MPR2=33.3(1−NC)%, MPR3=33.3(1+NC)%

Scenario (S1) (S2)

CPTD (%) CITR (%) C (s)ATT CPTD (%) CITR (%) C (s)ATT

NC=0%
IRP 39.99 0.62 1504.5 28.26 0.0 1479.3
PRM 24.60 0.09 1876.8 27.48 0.14 1792.4
MLR 0.90 1.17 1713.9 0.09 0.0 1614.4

NC=50%
IRP 42.73 0.14 1432.9 32.79 0.05 1493.9
PRM 24.89 0.22 1831.8 28.61 0.14 1826.7
MLR 0.51 0.55 1662.6 0.31 0.59 1660.9

NC=70%
IRP 38.11 0.99 1558.9 35.36 0.02 1499.6
PRM 25.35 0.34 1915.3 29.00 0.12 1869.6
MLR 0.89 2.79 1801.8 0.51 0.40 1705.6
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generated from the current step h onwards, are assigned a route choice based on MLR. High NC values mean that more travelers not
belonging to 1st class, are assigned routes based on MLR rather than PRM, improving travel time estimation accuracy for IRP during
the mixed class application. This also means that PRM does not contribute as much as IRP to the overall network performance.
Another observation is that when MPR1 > 30%, performance gains compared to MLR for when =MPR 100%MLR , the worst-per-
forming routing method, almost always exceed 40%, for all non-compliance rate combinations. Even for MPR1⧹MPR2⧹MPR3=10%
⧹10%⧹80%, with NC=70%, the case with least market penetration for both IRP and PRM, for the more realistic scenario (S1), we
can still see a performance gain of 13.60%. IRP for (S1), in combination with PRM, can potentially benefit overall network per-
formance, provided that ⩾ ⩽50% NC 70%, even though MPR1 and MPR2 are as low as 10%. We also demonstrated the positive
influence of autonomous vehicles in the overall network performance, evidenced by a performance gain RWAC =40.73% for (S1) and

RWAC =46.25%, given equal market penetration rates MPR1=MPR2=MPR3=33.3% and non-compliance rate NC=0%. In-
dividual performance metric results from Tables 5 and 6 provide us with a more detailed insight regarding the different effect the
degree of market penetration, as well as the information provided to IRP in scenarios (S1) and (S2) has on Public Transit Diversion,
Incomplete Trips Rate and Average Travel Time for each routing method. PTD values for IRP never exceed 45% which is less than the
lowest PTD value for IRP for all market penetration rate combinations where MPR3 < 30%.. As expected, the highest PTD rate for
IRP is for (S1) with NC=0% and the lowest PTD rate for IRP is for (S2) with NC=0%. The reason for this is the fact that in (S1),
IRP’s forecasting step accuracy is diminished, due to information available only for the 1st class travelers. All other traveler classes
are assigned routes based on MLR. On the other hand, for (S2) and NC=0%, IRP’s forecasting step accuracy is higher for this
particular combination of market penetration rates, since information is available for both 1st and 3rd traveler classes. Due to it’s
overall high PTD rate, IRP presents with the lowest ATT in both (S1) and (S2). More specifically, we observe that when the individual
PTD rate for IRP exceeds 40%, PTD contributes the most to the reduction of individual ATT for IRP, as is the case for (S1) and
NC=50%. Another positive effect of IRP is the reduction of individual PTD rate for MLR, which drops below 1%. While the ITR for
IRP for (S2) tends to be the lowest, for (S1), due to the limited information availability, prediction is not as accurate, leading to ITR

Table 6
Comparison of individual performance metrics for each routing method when it is for a mixed application of IRP, PRM and MLR with market penetration rates
MPR1=10%, MPR2=10(1−NC)%, MPR3= (80+10NC)% with NC=0%, 50%, 70% for scenarios (S1), (S2).

MPR1=10%, MPR2=10(1−NC)%, MPR3= (80+10NC)%

Scenario (S1) (S2)

CPTD (%) CITR (%) C (s)ATT CPTD (%) CITR (%) C (s)ATT

NC=0%
IRP 49.77 0.45 1284.7 57.94 0.42 1589.1
PRM 57.10 0.19 1022.2 48.43 0.84 2349.0
MLR 28.25 8.72 1584.3 17.75 17.20 2519.6

NC=50%
IRP 61.55 0.49 1073.1 61.22 0.04 1447.3
PRM 50.88 0.20 1175.4 49.55 0.42 2387.7
MLR 27.95 8.29 1443.0 19.14 19.68 2567.0

NC=70%
IRP 59.17 0.32 1595.4 60.78 0.07 1491.5
PRM 50.49 0.27 2454.7 51.58 0.24 2376.3
MLR 20.08 19.07 2580.0 19.60 19.42 2575.8

Table 7
Various market penetration rate combinations for scenarios (S1), (S2) of IRP representing 1st class travelers, PRM representing 2nd class travelers with NC=0%, 50%,
70% non-compliance rate and MLR representing non-compliant segment of 2nd class, as well as 3rd class travelers.

Ratio weighted average C (%)RWA

Scenarios (S1) (S2)

MPR1⧹MPR2⧹MPR3 for IRP⧹PRM⧹MLR ( ⧹ ⧹% % %) NC(%)

0 50 70 0 50 70

10⧹10(1−NC)⧹(80+ 10·NC) 9.74 15.96 13.60 15.80 14.44 14.39
10⧹40(1−NC)⧹(50+ 40·NC) 27.64 18.62 15.66 28.70 20.25 17.84
10⧹70(1−NC)⧹(20+ 70·NC) 27.02 28.42 19.92 30.13 28.30 20.31

33.3⧹33.3(1−NC)⧹33.3(1+NC) 40.73 45.34 42.97 46.25 47.35 46.85
40⧹40(1−NC)⧹(20+ 40·NC) 42.30 47.80 48.81 46.38 48.53 49.82

40⧹60(1−NC)⧹60·NC 36.12 44.19 48.85 43.73 47.36 48.87
70⧹30(1−NC)⧹30·NC 44.51 48.31 48.14 46.81 48.37 48.51
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almost half of that for MLR, which exhibits the highest ITR rate for all but one NC/Scenario combinations. The ATT for PRM is
consistently lagging behind the ATT for IRP and MLR. The best performing ATT for PRM is for (S2) and NC=0%. This means that we
can indirectly observe the effect market penetration rate has on the individual performance of PRM and MLR, but not IRP, as 1st class
travelers are assumed to be fully compliant. ITR for PRM is at it’s lowest for (S2), followed closely by (S1). Additionally, one must
take into consideration the beneficial effect the 1st traveler class, employing IRP, has on the 2nd and especially the 3rd traveler class.
Compared to ATT results for PRM from Tables 2 and 4, for several degrees of penetration, ranges from 18% to 30% improvement on
the ATT for PRM in the mixed application. It should be noted that the ATT for MLR seems to benefit the most from the presence of 1st
class travelers, as can be seen from the improvement ranging between 40% and 45%, compared to results from Table 2. Compared to
MLR, PRM seems to benefit less from IRP, however, compared to performance results when IRP is absent, see Table 4, there is
individual improvement of approximately 10% for ITR and 22% for ATT of PRM. We can observe that, owing to the higher PTD rate
values for IRP in all combinations but the one for NC=0% (S1), ATT for IRP never exceeds 1600 s, whereas ATT for PRM and MLR
exceed 2000 s in the majority of combinations. For NC=0% (S1), ATT for PRM is shorter than ATT for IRP, which can be explained
by the fact that this is the only case where the PTD value for PRM is higher than that of IRP. In all combinations, ITR for MLR never
goes lower than 8%, whereas ITR values for IRP and PRM never exceed 0.50% and 0.90% respectively. While this could be partly
attributed to IRP’s and PRM’s superior performance, the main factor is the comparatively low degree of market penetration both for
1st and 2nd traveler classes, employing IRP and PRM respectively.

5. Conclusions and future research

In this paper, we have introduced a multi-class extension of the Network Transmission Model, used to simulate regional traffic
dynamics. We presented three types of region-based routing approaches, an innovative predictive routing method with Public Transit
Diversion called IRP (Incremental Route Planning), a non-predictive routing method with Public Transit Diversion integration called
PRM (Proxy Regret Matching), as well as an extension of MLR (Multinomial Logit Routing), which also includes Public Transit
Diversion. We compared the individual performance of each method, when applied to a regional traffic network. We used IRP to
represent a class of travelers which employ autonomous vehicles. We used PRM to represent a class of travelers which employ
conventional vehicles equipped with RGIS (Route Guidance and Information Systems). We used MLR to represent a class of travelers
which employ unequipped, conventional vehicles. Our main contribution is the investigation of mixed traveler class interaction on a
regional traffic network, through mixed application of the IRP, PRM and MLR routing methods. We considered 2 scenarios for the
autonomous vehicles, which make use IRP for fully compliant route guidance. In (S1), autonomous vehicles are assumed to be
privately owned, which means that information provision is limited to other autonomous vehicles only. Hence, travel time prediction
accuracy is negatively affected by the assumption that all other vehicles are routed as if unequipped with RGIS. In (S2), autonomous
vehicles are assumed to be publicly owned, as part of a public one-way ridesharing service which means that information provision
includes historical and real-time data about all vehicles in the urban traffic network. Hence, travel time prediction accuracy is
positively affected. In essence, market penetration rates were varied explicitly through specification of MPR1, MPR2, MPR3 for 1st,
2nd and 3rd traveler class respectively, as well as non-compliance rates NC for 2nd class of travelers. In addition, respective market
penetration rates for 1st, 2nd and 3rd traveler classes were varied implicitly through the introduction of Public Transit Diversion
mechanisms to each routing method employed to represent each distinct traveler class. We were able to observe performance gains
ranging from approximately 10–50%, compared to individual application of MLR, a more realistic reference case. IRP was con-
sistently providing 1st class travelers with the shortest ATT, implicitly guaranteeing full compliance, even in the case full compliance
is not a mandatory feature for 1st class travelers. This indicates the positive potential impact of autonomous vehicle technology
adoption.

In future work, we aim to add sophistication to our Public Transit Model by introducing passenger transition delays and train
frequency, with varying travel times. We also aim to introduce a more sophisticated compliance model, so that 2nd class traveler
compliance is dependent on the travelers’ travel time information reliability, as well as their level of familiarity with the route
assigned to them. Based on our current results regarding ATT for PRM in a mixed-class application setting, one could argue that 2nd
class travelers would become non-compliant, eventually being subsumed by the 3rd traveler class. Our aim is to introduce congestion
pricing as an additional traffic management measure, where departure time can be considered as an additional decision variable, so
that we can eliminate the difference in individual performance between PRM and MLR, thus reaching a stable market penetration rate
combination. In addition, we shall investigate the interaction of multiple types of routing methods with congestion pricing and make
observations on the overall network performance.
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